|
In mathematical logic, abstract model theory is a generalization of model theory which studies the general properties of extensions of first-order logic and their models.〔''Institution-independent model theory'' by Răzvan Diaconescu 2008 ISBN 3-7643-8707-6 page 3〕 Abstract model theory provides an approach that allows us to step back and study a wide range of logics and their relationships.〔''Handbook of mathematical logic'' by Jon Barwise 1989 ISBN 0-444-86388-5 page 45〕 The starting point for the study of abstract models, which resulted in good examples was Lindström's theorem.〔Jean-Yves Béziau ''Logica universalis: towards a general theory of logic'' 2005 ISBN 978-3-7643-7259-0 pages 20–25〕 In 1974 Jon Barwise provided an axiomatization of abstract model theory.〔J. Barwise, 1974 ''Axioms for abstract model theory'', Annals of Math. Logic 7:221–265〕 ==See also== * Lindström's theorem * Institution (computer science) * Institutional model theory 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「abstract model theory」の詳細全文を読む スポンサード リンク
|